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Abstract
Correspondences between functional and thermodynamic melting properties in a genome are
being increasingly employed for ab initio gene finding and for the interpretation of the
evolution of genomes. Here we present the first systematic genome wide comparison between
biologically coding domains and thermodynamically stable regions. In particular, we develop
statistical methods to estimate the reliability of the resulting predictions. Not surprisingly, we
find that the success of the approach depends on the difference in GC content between the
coding and the non-coding parts of the genome and on the percentage of coding base-pairs in
the sequence. These prerequisites vary strongly between species, where we observe no
systematic differences between eukaryotes and prokaryotes. We find a number of organisms in
which the strong correlation of coding domains and thermodynamically stable regions allows us
to identify putative exons or genes to complement existing approaches.

In contrast to previous investigations along these lines we have not employed the
Poland–Scheraga (PS) model of DNA melting but use the earlier Zimm–Bragg (ZB) model.
The Ising-like form of the ZB model can be viewed as an approximation to the PS model, with
averaged loop entropies included into the cooperative factor σZB = σPS N̄−c . This results in a
speed-up by a factor of 20–100 compared to the Fixman–Freire algorithm for the solution of the
PS model. We show that for genomic sequences the resulting systematic errors are negligible
compared to the parameterization uncertainty of the models. We argue that for limited
computing resources, available CPU power is better invested in broadening the statistical base
for genomic investigations than in marginal improvements of the description of the physical
melting behavior.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of the principles underlying the storage
and replication of the genetic information [1] and of the DNA
nucleotides triplet code [2], extreme efforts have been made to
determine [3, 4] and analyze [5] the genomes of organisms.
Several techniques exist to identify the location of coding
sequences or genes: extrinsic approaches [6, 7] using proteins
with known amino-acid sequences, comparative methods [8]
between genomes, or ab initio approaches [9–14] which try to
predict biologically functional domains along the genome on
the basis of sequence effects. Both genetic information [15, 16]
and the physical properties [17–19] of DNA are correlated with
the GC content. This leads to the question of whether there is

a causal relation or if, for practical purposes, the former can be
identified using the latter.

Since processes like replication and transcription require a
partial opening of the double-helix, it is natural to consider the
thermal denaturation of DNA in this context [13, 14, 20–33].
To exploit this idea, one has to choose (1) a source
of information on the physical melting properties and
(2) a method for inferring biologically relevant information
from a physical melting profile. For example, in his
investigations Yeramian [23, 24] calculated physical melting
profiles from the Poland–Scheraga (PS) model of DNA
melting [39] and identified coding sequences with regions
of the genome which melt above a suitably chosen
temperature.
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In this paper we focus on improving the computational
efficiency of the physical annotation of genomes and, in
particular, on devising methods to quantify the reliability
of the resulting predictions. Clearly, it is not enough to
investigate specific examples chosen on the basis of previous
knowledge. Rather a comparison needs to be done statistically,
requiring the investigation of isochores [15], chromosomes,
entire genomes and, possibly, inter-species comparisons. This
need to broaden the statistical base explains our interest
in judging the merits of different physical models of DNA
melting in relation to their computational cost (section 2).
In particular, we find that one of the oldest models of DNA
melting, the Zimm–Bragg (ZB) model [34, 35], performs
extremely well when compared to the Poland–Scheraga (PS)
model [39–42] used by most previous investigations along this
line. In section 3, we show that the systematic error due to
ZB approximation of the PS model is smaller than the error
due to the parameterization uncertainty of the PS model [44].
In particular, section 4 demonstrates that using the ZB model
we fully reproduce the results of Yeramian and Jones [14] and
Carlon and Blossey [25] on the physical annotation of genomic
DNA. In section 5, we apply the ZB model to several complete
genomes and study the correlation between melting and coding
properties at the base-pair and the domain level. As a final step,
we estimate the confidence level of the resulting identification
of putative exons or genes (section 6). In section 7 we give a
brief conclusion.

2. The Zimm–Bragg model

Since it is difficult to experimentally resolve the separation of
individual base-pairs, the physical melting analysis is carried
out using models of DNA denaturation [13, 14, 20–33].
Several models exist: the ZB model [34, 35], the nearest-
neighbor (NN) model [36–38], the PS model [39–42, 44], a
corresponding lattice model [45] and the independent Peyrard–
Bishop–Dauxois (PBD) model [46, 47]. Mostly, these models
view the denaturation process as the successive opening of
domains in the sequence. As a consequence of the highly
cooperative nature of DNA melting, they define precisely
delimited regions which can be compared to biologically
functional domains along the genome. All models approximate
the local specificity of DNA by nearest-neighbor (pairing and
stacking) interactions. Non-local (in terms of chemical not
spatial distance) interactions are included to different degrees,
using results or models describing generic polymer properties
of DNA. The lattice model [45] takes into account both intra-
and inter-loop excluded volume interactions. The PS model
neglects [39] or approximates [56] the long-range inter-bubble
excluded volume interactions. The ZB and PBD models also
neglect the intra-loop excluded volume. Treating the PBD
model as a case apart, the relation between parameters in
different models is well understood [45, 44]. The values
of the parameters were determined in extensive comparisons
to experiment [42, 38] and we have recently shown how
the remaining uncertainties in the parameterization of the
PS model propagate to the level of the predicted melting
profiles [44]. In the following, we concentrate on two models:

Figure 1. Example of 1D-Ising-like configuration and description of
the free energy contributions in the Hamiltonian of the PS model
(with end effects) and of the ZB model (with periodic boundary
conditions).

the PS model used in most previous investigations along the
present lines [13, 14, 23–25] and the computationally cheaper
ZB model.

The PS model [39, 40] considers the denaturation of
the double-helical complex as a sequence of cooperative and
successive openings of internal domains. Double-stranded
DNA is viewed at the secondary structure level and interactions
are modeled as the free energy of a base-pair step formation
(10 possible steps) �gNN(T ) = �hNN − T�sNN, a capping
free energy ω(T ), and an entropic loop factor σ (cooperativity)
and entropic free-end factor σ̄ [43, 44] (see figure 1).
The contribution of an internal loop (size L) to the total
partition function is σ L−c , the contribution of a free end
(size L ′) is σ ′L ′c′

, while the contribution of a helical stem
is exp(−β

∑
�gNN) and the contribution of a closed end is

exp(−βω). L−c and L ′c′
account for polymeric effects of

loops and free ends [43, 52]. Within the parameterization
uncertainties, a recent version of the PS model [44] predicts
the melting behavior of DNA strands with arbitrary strand
length, strand concentration and ionic strength of the buffer
solution. The typical uncertainty of the predicted local melting
temperature is of the order of 2 K. Predictions for the domain
structure are extremely robust (see figures 2(A) and (B)).

The PS model is solved using recursion relations
for conditional and unconditional probabilities of base-pair
openings [41, 48] or partition functions [49, 50, 43, 44]. The
computation of the PS model could be accelerated using the
Fixman–Freire algorithm [53].

The earliest model of DNA denaturation, the ZB model,
has the same mathematical structure as the heterogeneous
1D Ising model [35, 21, 54, 55] and can be viewed as an
approximation to the PS model. The loop-length-dependent
cooperative entropic factor σ L−c is replaced by a constant
contribution σ L̄−c ≡ exp(−2γ /(kBT )) where L̄ is a typical
size and γ is a boundary (forking) free energy. At first
glance, this approximation is very crude as it neglects
generic consequences of the polymeric nature of DNA. In
particular, for homogeneous DNA, the ZB model fails to
predict the existence of a first-order melting transition at a
finite temperature [56]. Sequence heterogeneity masks these
effects to some extent [57]. Indeed, for natural sequences,
the exponent c (from polymer theory) does not seem to
influence the melting properties if the value of σ is modified
appropriately [52].
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Figure 2. Evolution of Tm(i) for a piece of the genome of Plasmodium falciparum (A, C) and Tropheryma whipplei (B, D) ([Na+] = 0.1 M)
calculated with the PS model using standard parameters (red) or different random sets of parameters in the confidence limit (gray) (A, B) and
with the ZB model with various values of γ (C, D).

If this approximation is made, the Hamiltonian of the
system can be written as

H =
∑

i

{�gNN(i, i + 1) θi θi+1

+ γ [θi(1 − θi+1) + θi+1(1 − θi)]}
=

∑

i

{2γ θi + (�gNN(i, i + 1) − 2γ ) θi θi+1} (1)

where θi = 0(1) if base-pair i is open (closed). In equation (1),
the first term is the sum over the free energies of base-pair step
formation, the second term represents the forking contribution
at a stem–loop boundary. The partition function is defined as

Z =
∑

θi

exp
(−βH({θ j})

)
. (2)

The different free energy contributions are illustrated in
figure 1.

We are interested in melting. The basic properties
of interest are the temperature-dependent probabilities that
base-pair i is closed, �(i, T ) ≡ 〈θi 〉(T ), and the local
melting temperature Tm(i), defined as �(i, Tm(i)) = 1/2.
Due to the formulation as a simple 1D Ising-like model,
resolution of the model and calculation of observables can be
easily performed using a simple O(N) transfer-matrix method
algorithm [34, 58]:

Z = Trace

(
N∏

i=1

Ti

)

(3)

�(i, T ) = 1

Z Trace

[(
i−1∏

j=1

Tj

)

T ′
i

(
N∏

j=i+1

Tj

)]

(4)

Table 1. Typical values for γ and σ L̄−c for various values of L̄.

L̄ γ /(kBT ) σ L̄−c

10 7.0 8.9 × 10−7

170 10.0 2.0 × 10−9

500 11.2 2.0 × 10−10

1000 11.9 4.5 × 10−11

5000 13.6 1.4 × 10−12

10000 14.4 3.2 × 10−13

with

Ti =
(

e−β�gNN(i,i+1) e−2βγ

1 1

)

T ′
i =

(
e−β�gNN(i,i+1) e−2βγ

0 0

)

.

Capping terms are neglected and periodic boundary conditions
are used. The parameter values are the same as those used for
the PS model in [44]. The value for γ depends on the choice
of L̄ (see table 1).

For a sequence of N base-pairs (bp), the ZB model can be
solved by a O(N) algorithm (transfer-matrix method). While
the exact solution of the PS model requires O(N2) operations,
the Fixman–Freire algorithm [53], by approximating the non-
local (and limiting factor) correction to the loop entropy L−c

by a multiexponential expansion L−c ≈ ∑I
i=1 ai exp(−bi L),

reduces the PS computation to a O(N × I ) algorithm, where
I ∝ log(Lmax), the maximal loop length approximated by the
FF approximation. Typically, for loop lengths up to 5 kbp,
I ≈ 14, for loop lengths up to 108 bp, I ≈ 21.

For cache and numerical reasons, the PS model
computation can be further accelerated by slicing the sequence
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Figure 3. CPU time (in seconds) used to compute melting properties
for one temperature as a function of the sequence length in a log–log
plot on a 2.4 GHz Intel Core 2 Duo processor using the PS model
(solid blue line) with Ns = Lmax = N and the ZB model (solid red
line). The circles represent the total CPU times needed to study the
entire human genome using the PS model (green: Ns ∼ 108 bp,
Lmax = 108 bp, by Liu et al [33]; blue: Ns = 10 kbp, Lmax = 10 kbp,
extrapolated time) or the ZB model (red, extrapolated time). The
black square corresponds to typical resolution time of the PBD
model [28] and the black triangle to the lattice model.

into blocks of a given size Ns. For a genomic application,
the size of the relevant domains is in the kbp range or below
(see figure 11). Therefore, Ns > kbp and Lmax ∼ kbp.
For example, Yeramian et al in [14] take Ns = 10 kbp and
Lmax = 5 kbp; in [33], Liu et al take Ns ∼ 108 bp and
Lmax = 108 bp. For numerical convenience, we solve the
ZB model for sequence slices of 100 kbp with overlapping
windows to prevent boundary effects.

Figure 3 compares the CPU time needed by the PS-FF, the
PBD and the ZB models. The ZB model allows us to speed
up the melting computations by about a factor of 30 compared
to the PS model with Ns = 10 kbp and Lmax = 10 kbp and
about a factor of 90 with Ns = 100 kbp and Lmax = 10 kbp.
For example, the calculation of the human melting map by Liu
et al [33] (Ns ∼ 108 bp, Lmax = 108 bp) took 22 CPU days
on a HP SuperDome (64× Itanium 2 processors, 1.5 GHz, 6
MB cache) whereas it should take about 6 days for the same
machine to solve the PS model (Ns = 10 kbp, Lmax = 10 kbp)
and about only 5 h for the ZB model.

On the same level, resolutions of the PBD model using
a direct numerical integration method [28, 51] or of the
lattice model take hours to calculate the melting properties
of a 60 bp sequence for one temperature. In the same
computing time, sequences of length up to 5 × 108 bp could
be investigated with the PS-FF model and up to 1010 bp with
the ZB model.

3. Validation I: DNA melting

In figures 2(C) and (D), we have plotted melting profiles Tm(i)
obtained with the PS model and with the ZB model for three
different values of γ (corresponding to L̄ ∼ 10, 150, 2500)
for two genomic DNA sequences: one extracted from the

chromosome 11 of Plasmodium falciparum (PF, accession
number NC 004315 [59]) and one extracted from the genome
of Tropheryma whipplei TW08/27 (TW, accession number
BX251411). The behavior of Tm(i) over the sequence is
a good guideline for observing melting domains along the
chain. Results illustrate the cooperativity of the ZB model:
larger interfacial energies γ increase the size of the melting
domains. The ZB model reproduces the PS melting profiles
reasonably well. For low L̄, it predicts small bubbles which are
not present in the PS computation, and for high L̄, it groups
together some PS domains. The curve for γ = 10kBT is in
excellent agreement with the prediction of the PS model. To
be more precise about the systematic error introduced by the
ZB approximation, we calculate

〈|�T |〉 = 1

N

∑

i

|Tm(i, ZB) − Tm(i, PS)| (5)

as a function of γ . In figure 4(A), we show that there
exists, for each organism, a minimum which corresponds to
the typical bubble size in the sequence. The optimal L̄ is
approximately 150–200 bp and the minimized error is very
small (〈|�T |〉min ≈ 0.3 K ). By comparison, errors due to
parameterization are about 1–2 K (figures 2(A) and (B)). For
the sequences from figure 2, the correlation between Tm(ZB)

and Tm(PS) approaches 1, as shown in figure 4(B).

4. Validation II: genomic applications

4.1. Gene finding in genomic DNA

The sharpness of the helix-loop transition predicted by melting
models allows us to identify domains along the sequence.
Matching these domains with the genome properties of DNA is
therefore an interesting way to compare genomic and physical
properties in natural sequences. As G · C base-pairs are
more stable than A · T base-pairs, the melting temperatures
depend on the local GC content fGC [18]. Generally the
coding regions of genomes are GC-rich compared to the
average GC content [60, 61] (table 2). For this reason, it
was proposed to compare melting domains and coding parts
of the genome [13, 14, 20–24]. For several temperatures,
Yeramian et al [14], plot �(i, T ) as a function of the base-pair
position. For each temperature, the evolution of �(i, T ) along
the sequence highlights successive regions which are compared
with coding sequences (CDS). We perform this comparison for
the entire genome of PF and TW. As a confirmation, figure 5
underlines the agreement between results with PS and ZB.
Moreover, as in [14], a significant mapping between coding
and closed domains is found for PF at 68 or 70 ◦C but no clear
evidence of correspondence is observed for TW.

4.2. Exon boundaries in complementary DNA

Carlon et al [25] studied the melting properties of comple-
mentary DNA (cDNA). cDNA is the reverse transcription
from the single-stranded mRNA, it contains no introns. Fig-
ure 6 shows the differential melting curve −d�t/dT (where
�t(T ) = (1/N)

∑
i �(i, T )) for three human cDNAs. Again,
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(B)(A)

Figure 4. (A) Mean error on temperatures 〈|�T |〉 as a function of γ for several sequences. (B) Scatter plot of Tm(ZB) calculated with the ZB
model versus Tm(PS) calculated with the PS model. Correlation factor r for PF and TW is given in the legend box (γ = 10kBT ).

position (10 kbp)

Figure 5. Probabilities of helix opening along the sequence for PF (left) and TW (right) at different temperatures (see the color legend)
calculated with the PS (top) or ZB (bottom) model ([Na+] = 0.1M , γ = 10kBT ). Coding domains are represented in green at the top of the
curves.

Table 2. Structural properties for several prokaryote (†) and
eukaryote (∗) genomes.

Species N (Mbp) %CDS f tot
GC f cds

GC f rest
GC �τmax

P. falciparum∗ (PF) 22.86 52.5 0.190 0.237 0.146 0.33
S. pombe∗ (SP) 12.57 56.4 0.36 0.397 0.314 0.30
T. whipplei† (TW) 0.93 84.4 0.463 0.464 0.458 0.03
E. coli† (EC) 4.64 88.0 0.508 0.519 0.43 0.10
S. cerevisiae∗ (SC) 12.07 72.4 0.383 0.396 0.348 0.14
D. melanogaster∗ 120.38 18.6 0.424 0.534 0.403 0.17
(DM)
C. elegans∗ (CE) 100.26 25.2 0.354 0.426 0.330 0.16

the results corroborate the validity of the ZB approxima-
tions and show for some exon boundaries a good corre-
spondence with melting properties. For complex melting
curves, it can be convenient to compute the temperature range
over which a boundary between melting domains exists at
particular positions in the cDNA in comparison to exon–
exon boundaries. Figure 7 confirms the possible coincidence
between melting domains and exons boundaries in human
cDNA.

5. Genome wide melting analysis

In section 4 we demonstrated the utility of the ZB model in
terms of numerical accuracy and computational performance.
We now extend the analysis proposed in [13, 14, 23, 24]
to the entire genomes of seven species (Plasmodium fal-
ciparum, Schizosaccharomyces pombe, Tropheryma whip-
plei, Escherichia coli, Saccharomyces cerevisiae, Drosophila
melanogaster, Caenorhabditis elegans, see table 2 for details
and abbreviations) partially analyzed before (PF, TW, SC, SP,
DM) or known as model organisms (SC, EC, CE). These ex-
amples include both prokaryotic (TW, EC) and eukaryotic (PF,
SP, SC, DM, CE) organisms with CDS densities ranging from
18% to 88% and with GC content varying between 19% and
51% (see table 2).

5.1. Correlations on the base-pair level

We start with a more quantitative comparison of coding and
melting properties. For each studied temperature T , we can
attribute to each base-pair i a predicted state: if Tm(i) > T
(i.e. the base-pair is closed at T ), the predicted state of i is

5
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Figure 6. Differential melting curve −d�t/dT and melting domains for: (A) human β-actin cDNA (accession number NM 001101),
(B) human CDK4 cDNA (NM 000075) and (C) the human gene EHHADH (NM 001966) in a 0.05 M [Na+]-buffer (γ = 10kBT ) obtained
with the PS model (blue) and the ZB model (red). Vertical bars indicate the base-pairs for which Tm(i) > T for the PS model strictly (blue),
for the ZB model strictly (red) or for both models (green). Horizontal bars are the exon–exon boundaries (solid lines) and the boundaries
between coding sequences (CDS) and untranslated regions (UTRs) (dashed lines).

Figure 7. The temperature range δT over which a particular
base-pair is a boundary between melting domains for the human
interleukin enhancer binding factor 2 (ILF2) cDNA (accession
number NM 004515) in a 0.05 M [Na+]-buffer (γ = 10kBT )
obtained with the PS model (blue) and the ZB model (red). Vertical
lines represent the exon–exon boundaries (solid lines) or the
CDS–UTR boundaries (dashed lines).

coding otherwise the base is open and its predicted state is
non-coding. For the studied genomes, we obtain as a function
of temperature the number of true positive predictions NTP

(i is correctly predicted as a coding base), of true negative
predictions NTN, of false positive predictions NFP and of false
negative predictions NFN. From these numbers, we deduce the
value of statistical indicators: the sensitivity β ≡ NTP/(NTP +
NFN) measuring how well the coding base-pairs of the genome
are identified as closed, the specificity α ≡ NTN/(NTN + NFP)

evaluating how well the non-coding base-pairs are identified
as open, and the correlation rate τ ≡ (NTP + NTN)/(NTP +
NFN + NTN + NFP) measuring the fraction of well predicted
base-pairs. The mapping between coding and closed domains
is more and more accurate as the three indicators approach
together 1. Figures 8(A) and (B) represent α, β and τ for PF
and TW as a function of the temperature and compare results

with αr, β r and τ r calculated from a random distribution of
coding base-pairs along the sequence. At low temperatures,
all the base-pairs are closed and seen as coding. Therefore
the sensitivity tends to 1 (all the coding bases are recognized),
the specificity tends to 0 (no non-coding bases are recognized)
and τ tends to the percentage of CDS in the genome. In
the high temperature limit, the effects are reversed, β →
0, α → 1 and τ tends to the percentage of non-coding
base-pairs in the sequence. In figure 8(C), we observe the
temperature dependence of the correlation increase relative to
the random case �τ ≡ τ − τ r. As τ r corresponds to the
average random case, fluctuations στ r around the mean value
are evaluated by generating several different random coding
annotations for the genome in question and by comparing
them with the melting properties (see legend of figure 8).
While for TW, no clear difference appears with the random
distribution, for PF a large range of temperatures exists
where the difference is significant (compared to στ r ) and the
correlation between coding and thermodynamic domains is
high.

Concerning the sensitivity and the specificity, it is possible
to show (see appendix) that

�β = 1

2 × %CDS
�τ (6)

�α = 1

2 × (1 − %CDS)
�τ (7)

where %CDS is the percentage of coding sequences in the
genome (see table 2). Equations (6) and (7) imply directly that,
for a given species, �τ , �β and �α are maximal at the same
temperature (defined as the optimal temperature Topt) and are
proportional. Figure 9(A) indicates that the maximal matching
occurs around T ≈ Tmid (where Tmid = (〈T cds

m 〉 + 〈T rest
m 〉)/2),

i.e. between the average melting temperature of coding regions
〈T cds

m 〉 and the average melting temperature of the rest of the
genome 〈T rest

m 〉.
The reason for the different rates of success of the

melting analysis becomes apparent in figure 9(B). It shows the
normalized melting temperature distributions for the coding

6



J. Phys.: Condens. Matter 21 (2009) 034108 D Jost and R Everaers

Figure 8. (A, B) Statistical indicators α (green circles), β (blue squares) and τ (red triangles) (see text) for PF (A) and TW (B) with the real
coding annotations (full lines) or for a random distribution of the coding base-pairs (dashed lines). (C) �τ ≡ τ − τ r for PF (black squares)
and TW (red circles). Fluctuations of τ r are smaller than the symbol sizes: στ r = 1 × 10−3 (PF) and 5 × 10−3 (TW).

Figure 9. (A) Temperature Topt where �τ is maximal as a function of the middle temperature Tmid between the average melting temperature
of coding and non-coding regions for several species (see legend box and table 2). (B) Normalized distribution P(Tm) of the melting
temperatures for the coding base-pairs (solid lines) and the non-coding base-pairs (dashed lines) for PF (black squares) and TW (red circles).

and non-coding base-pairs for PF and TW. The overlap of the
two distributions appears to be organism-dependent and it can

be evaluated via the parameter OTm ≡ �T/

√
w2

cds + w2
rest,

where �T ≡ 〈T cds
m 〉 − 〈T rest

m 〉 and wcds and wrest are,
respectively, the standard deviations of the coding and the
non-coding distributions of melting temperatures. In the
poorly matching example TW, the two distributions are quasi-
identical: �T ≡ 〈T cds

m 〉 − 〈T rest
m 〉 is very small (≈0.5 K)

and OTm = 0.124. In contrast, for PF, the two distributions
are largely separated (�T ≈ 4.5 K) and overlap much less
(OTm = 0.965).

In figure 10, we show how the normalized overlap
correlation is connected with the success of the melting
analysis though the maximal values of �τ , �β and �α. In
figure 10(A), we plot �τmax ≡ �τ(Topt) as a function of
the overlap parameter OTm . The larger the overlap (i.e. the

weaker OTm is), the smaller the predictive power of the melting
analysis becomes. If we compare those results with the
structural data given in table 2 showing the different GC
content of the coding and of the non-coding parts of the
genomes, we observe that the mapping between biological and
thermodynamic properties works better the more strongly the
GC content differs between the coding and the non-coding
sequences (see inset in figure 10(A)), underlying the clear
relation between melting behavior and the GC composition.
Figures 10(B) and (C) show the behavior of �βmax and
�αmax as a function of OTm/(%CDS) and OTm/(1 − %CDS)

(parameters inspired by equations (6) and (7)). Generally, we
remark on an important difference from the random case in the
sensitivity and a weaker difference for the specificity for gene-
poor genomes (DM, CE) and the reverse observations can be
made for gene-rich genomes (SC, EC).
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Figure 10. Differences �τmax (A), �βmax (B) and �αmax (C) for several species (same color legend as in figure 9(A)) as a function of the
overlap of the distributions of the melting temperatures for the coding and non-coding parts of genomes (see figure 9(B)). The inset in (A)
represents �τmax as a function of the difference between the GC content of the coding f cds

GC and the non-coding f rest
GC parts of the genomes.

Figure 11. Normalized distributions of the coding domain sizes (solid lines) and of the closed domain sizes (dashed lines) for PF (A) and
TW (C), and the normalized distribution of the non-coding domain sizes (solid lines) and of the open domain sizes (dashed lines) for PF (B)
and TW (D).

5.2. Correlations on the domain level

In the preceding section we studied the relation between coding
and melting properties at the base-pair level. In the following
we investigate if the melting analysis recognizes biologically
functional domains. To remove the temperature dependence of
the results, we study each species at the optimal temperature
Topt identified above.

Figure 11 shows the normalized distributions of the
sizes of the different domain types (coding/non-coding,

closed/open) for PF and TW. For PF, the closed and coding
distributions, as well as the open and non-coding distributions,
are identically peaked around the same domain size, but the
distributions of the melting domains are more concentrated
around the small region lengths. For TW, distributions extend
over a similar size range, but show larger deviations in the
limit of small domain sizes. To be more precise about domain
identification, for each region we define the local sensitivity
βloc (for coding domains) or the local specificity αloc (for non-
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Figure 12. (A) Mean value 〈βloc〉 of the local sensitivity for coding domains as a function of their lengths L cds for PF (black squares), TW (red
circles), DM (cyan triangles) and EC (purple stars). (B) Mean value 〈αloc〉 of the local specificity for non-coding domains as a function of their
lengths L rest.

Figure 13. Possible repartitions of closed (� = 1) and open (� = 0) domains (black lines) around a 400-bp coding regions (green lines).
βloc = 0.93 (A), 1 (B) or 0.73 (C).

coding domains) as the rate of well predicted base-pairs in a
single region. Figure 12 shows the mean value of βloc (and
αloc) as a function of the size of the coding (respectively non-
coding) regions Lcds (respectively L rest). We remark that,
at the optimal temperature, the short domains are generally
poorly identified. For larger domains, the values of 〈βloc〉
and 〈αloc〉 are approximately constant around the average
sequence values β(Topt) and α(Topt). The short size effect
means that cooperativity dominates for domain sizes below the
cooperative length L̄. The constant values of 〈βloc〉 and 〈αloc〉
for domains with sizes between 500 and 2000 bp indicates that
there is no preferential length for the success of the melting
analysis in this length range. This is in itself an interesting
and non-trivial result. Moreover, we can remark that locally,
even for TW (whose �βmax, �αmax and �τmax are very low),
〈βloc〉 and 〈αloc〉 are not negligible. Nevertheless, a good
value for 〈βloc〉 or 〈αloc〉 is not inevitably a signature of good
domain recognition. Indeed, in figure 13, we represent three
possible repartitions of closed and open domains around a

coding region. In all cases, βloc is high, but only in the first
one is the coding domain well identified.

Superficial inspection of most indicators presented so far
does not reveal striking differences in predictive power for PF
and TW, even if figure 8(C) shows the random behavior of the
melting analysis for TW. To go further in the domain analysis,
we plot in figure 14 the joined probability distributions for
a base-pair to be simultaneously in a coding/non-coding
domain of size Lcds/L rest and in a closed/open region of
size Lclosed/Lopen. In the case of TW (figure 14(B)), no
clear correlation between closed (open) and coding (non-
coding) domains appears. The distribution of points is diffuse
and highlights the poorness and randomness of the domain
recognition for TW. In the case of PF (figure 14(A)), the good
correlation between Lclosed and Lcds and between Lopen and
L rest proves the successful identification of the coding and non-
coding regions. For longer coding (or non-coding) domains,
we observe the loss of the correlations with the closed (or open)
regions, and the distribution of points is nearly homogeneous

9



J. Phys.: Condens. Matter 21 (2009) 034108 D Jost and R Everaers

Figure 14. Joined probability distributions for a base-pair to be simultaneously in a coding/non-coding domain of size L cds/L rest and in a
closed/open region of size Lclosed/Lopen, for PF (A) and TW (B).

Figure 15. Normalized histograms ncds(x) and nrest(x) of the relative distances x between an error situated in a coding (A) or non-coding (B)
domain and the left boundary of the domain (see text), for several species (same legend as in figure 12). The green dashed lines represent the
case when the errors are randomly distributed in the domains.

for Lclosed < Lcds (or Lopen < L rest) and quasi-null for
Lclosed > Lcds (or Lopen > L rest). This means that, for PF, long
biological domains are divided into smaller melting regions (as
in the third example of figure 13) revealing some discrepancies
in the relation with thermodynamic properties or some putative
multi-exon genes [24] which have not been identified by
standard gene finding methods [6–12] (see section 6). For
other organisms, the same representation reveals that good
correlations between closed and coding domains are observed
for species with a high �βmax value and good correlations
between open and non-coding domains are observed for
species with a high �αmax value (data not shown).

As a final step, we investigate the location of incorrectly
identified base-pairs in coding and non-coding domains. In

each coding or non-coding domain between base-pairs i1

and i2, for each error i (i.e. for each open or closed base-
pair), we calculate x = (i − i1)/(i2 − i1). x ∼ 0 or
x ∼ 1 imply that the error i is situated near a boundary.
Following [25], in figure 15, we compute the normalized
histograms ncds(x) and nrest(x) of the relative distances x
observed in coding and non-coding domains. No clear
rules or dependences appear. We could just remark than,
in general, while ncds(x) has a boundary close distribution,
nrest(x) is relatively flat and random, and vice versa. If the
errors are more or less situated around the boundaries of a
domain, we can consider that the identification of domains is
good.
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Figure 16. Coding (green) and melting (black) domains at Topt for part of chromosome 3 of PF. Identification of a putative gene composed of
four exons and of a possible division of PFC0910w into three exons. The probability � computed at Topt with the ZB (blue dashed line) and
the PS (red dashed line) models shows a very weak model-dependent behavior.

Figure 17. Probability for a base-pair to be part of a coding sequence
as a function of the local melting temperature for PF (solid black
line) and TW (solid red line). The fractions of coding base-pairs
%CDS are shown with dashed lines.

6. Identification of putative exons and genes

As a final step, we estimate the reliability of predictions
based on the melting analysis by a statistical comparison
to independent annotations present in the databases. The
latter are for the most part produced by combining several
ab initio bioinformatic gene finding codes. Programs like
GlimmerM [11] or phat [62] are based on motifs research and
Markov models [63]. Their results do not constitute absolute
truth and, instead of being errors, the discrepancies we pointed
out in the preceding sections could be the signature of putative
exons or genes unidentified and unspecified in the databases.
Clearly, there is little reason to trust the melting annotation of
the TW genome, while in the case of PF some, but probably
not all, of the predictions might indeed turn out to be relevant.
As a example, in figure 16, we represent part of chromosome

3 of PF where the melting analysis identifies a putative
gene composed of four exons between genes PFC0905c and
PFC0910w. Similarly PFC0910w, described in the database
as a single-exon gene, is possibly composed of three exons.
The inspection of the same chromosome segment using the full
PS model shows that the proposed domains are not artifacts
of the ZB model (see figure 16). If, during the ZB fast
analysis of the genome, doubts appear concerning part of the
proposed segmentation, one could easily go back to the PS
model, for specific sections, to verify or adjust the partition
of the domains.

In the following, we determine a position-dependent
confidence level for the results of the melting analysis. We base
our estimate on the distribution of local melting temperatures,
P(Tm|coding) and P(Tm|non-coding), in parts of the genome
identified as coding and non-coding by other annotation
methods (figure 9(B)). From these, we can determine the
probability that a base-pair with a melting temperature Tm

belongs to a coding or a non-coding sequence:

P(coding|Tm) = %CDS × P(Tm|coding)/{%CDS

×P(Tm|coding) + (1 − %CDS)

×P(Tm|non-coding)} (8)

P(non-coding|Tm) = 1 − P(coding|Tm). (9)

These quantities provide a convenient local measure of
confidence in the predictions of the melting analysis.
For simplicity, and in order to obtain robust estimates,
we determine them from Gaussian approximations of
P(Tm|coding) and P(Tm|non-coding).

We first consider the case of PF, where we expect the
melting analysis to work well. P(coding|Tm) exhibits a
sigmoidal form in line with Yeramian’s original argument
(see figure 17). Base-pairs with a high (low) melting
temperature have a high probability of being coding (non-
coding). Figure 18 represents the same part of chromosome
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Figure 18. Individual base-pair (red dashed lines) or average melting domain (red solid lines) value of P(coding|Tm) for a pat of chromosome
3 of PF. The red dotted-dashed line is the random probability %CDS of predicting a coding base-pair. The gray zone
(0.2 < P(coding|Tm) < 0.8) is representative of the non-confident predictions. The green lines corresponds to coding exons present in the
database.

3 of PF as figure 16 for which we plot P(coding|Tm) (base-
pair and domain mean values). We remark that for the putative
gene introduced before, only the first exon is predicted reliably
(P(coding|Tm) > 0.8). For the putative division of PFC0910w
into three exons, the confidence level of the predicted introns
is also relatively low.

In figures 19(A), (B), we compare the standard and
melting annotations for the complete PF genome as a function
of the confidence we have in our results. As expected from
the results presented in section 5, the results largely coincide.
The majority of putative coding sequences are detected by both
methods with high confidence levels for the melting analysis.
Deviations can be clearly grouped into two classes: (1) failures,
where the melting analysis proposes a deviating annotation
at low confidence levels and (2) predictions made at high
levels of confidence. The latter correspond to the small peak
in P(Tm|non-coding) around the average melting temperature
of coding sequences in the PF genome, which is visible in
figure 9(B). The putative corresponding sequences detected by
the melting analysis are listed in the supplementary materials.

The corresponding results for TW are strikingly different.
Panels (C) and (D) in figure 19 show that the high confidence
levels for predicted coding sequences simply reflect the high
proportion of coding sequences in the genome. In fact,
a value of P(coding|Tm) = %CDS corresponds to the
confidence level of a random annotation reproducing the
average density of coding sequences. This confidence level
can be quite high (%CDS(TW) = 84%), but, of course,
one does not learn anything from the exercise. Figure 19(D)
shows that the melting analysis does not fare any better in
the case of TW. In particular, the analysis cannot predict
any non-coding sequences with reasonable confidence. We
argued in section 5 that the problem is the high overlap
of the distributions of melting temperatures for coding and
non-coding sequences (figure 9(B)). Closer inspection of

P(coding|Tm) in figure 19 shows that the situation is even
worse. The TW genome presents a counter example to the
working hypothesis underlying the melting analysis: due to the
larger spread of melting temperatures in non-coding sequences,
base-pairs with large melting temperatures are more likely to
be non-coding than to be coding! Note, however, that this
is not a major problem. As long as coding and non-coding
sequences differ in their characteristics, it is possible to exploit
this difference to construct an annotation scheme along the
lines explored in this section.

7. Conclusion

In this paper we have addressed two independent questions
concerning the identification of coding sequences in genomes
on the basis of thermodynamic melting behavior: (1) which
model should be used for the generation of melting profiles
and (2) how to quantify the reliability of the predictions for the
biological information content.

In a first part we showed that one of the earliest
models of DNA thermal denaturation, the ZB model,
makes surprisingly reliable predictions for position-dependent
melting temperatures even though loop entropies are treated
incorrectly compared to the PS model. This underlines
the importance of sequence heterogeneity for the physical
properties of genomic DNA. The low computational costs of
the ZB model make it possible to investigate melting profiles
of entire genomes (∼108 bp per hour) on a personal computer.

In the main part of the paper we investigated correlations
between the coding and physical melting properties of DNA
on a genome wide scale. In particular, we developed a method
to estimate the confidence level of the physical annotation
based on a statistical comparison to independent results. For
some species, the correlations are strong enough to allow us
to identify new putative genes and introns with a high level of
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Figure 19. Number of base-pairs predicted as coding (A, C) (or non-coding (B, D)) by the melting analysis or by other methods (solid black
lines), by the melting analysis and by other methods (dotted red lines), by the melting analysis only (dotted green lines) and by other methods
only (dotted blue lines), as a function of the confidence (P(coding|Tm) for the coding predictions and P(non-coding|Tm) for the non-coding
predictions), for PF (A, B) and TW (C, D). The purple dashed lines represent the confidence in the random case.

confidence (listed in the supplementary materials), suggesting
that the coupling of a physically based approach with standard
gene finding methods could improve the genomic annotation
process. In other cases, the melting analysis yielded no reliable
predictions. The key determinant is the difference in the GC
content between the coding and the non-coding parts of the
genome.

Qualitatively, this mixed success had already been noted
in earlier studies [23] and was interpreted as a signature of
the strong influence of the physical (melting) properties on
the organization of archaic genomes, which was partially lost
during later stages of evolution. It could be interesting to use
our methods to systematically investigate this hypothesis. Our
current results show no significant trend between the studied
genomes of eukaryotes and prokaryotes or within the same
phylogenetic class (SP, SC).

It is only through an extensive comparison with the results
of independent annotation schemes that one can judge the
pertinence of the physical approach and the reliability of the
deviating predictions. Unfortunately, this validation cannot
be done once and for all, but needs to be repeated for each
(part of a) genome. Our use of the ZB model is not essential
to the results we have obtained in the second part of the
paper. Obviously, melting profiles generated on the basis of
the PS model could be analyzed in exactly the same way
given the necessary computing power. We have seen no

evidence that this would lead to significantly altered results.
Therefore, for given, limited computing resources, we tend to
advocate a broadening of the statistical base of the analysis,
at the expense of a possible, but (for the present purposes)
marginal, improvement of the description of the physical
melting behavior.

Appendix. Random distributions

For a random distribution of the coding base-pairs in the
sequence, at a given temperature T , the number of closed base-
pairs which actually correspond to a coding one N r

TP is

N r
TP = Nclosed × Ncoding

N
(10)

where Nclosed is the number of closed base-pairs and Ncoding =
%CDS × N = N r

TP + N r
FN. Then, β r = Nclosed/N .

Similarly, we can show that αr = Nopen/N and τ r =
(Ncoding Nclosed + Nnoncoding Nopen)/N2 where Nopen = N −
Nclosed and Nnoncoding = N − Ncoding.

Now, we can derive the equations (6) and (7). Using
definitions of Nnoncoding, Nopen, N , α, β and τ in terms of NTP,
NTN, NFP and NFN, we derive

α = 1

2Nnoncoding

(
Nτ + Nnoncoding + Nopen − N

)
(11)
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β = 1

2Ncoding

(
Nτ − Nnoncoding − Nopen + N

)
. (12)

By replacing τ by �τ + τ r, and by subtracting αr from
equation (11) and β r from equation (12), we finally obtain

�α = N

2Nnoncoding
�τ (13)

�β = N

2Ncoding
�τ. (14)
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